
3.	Frequency domain

Signal and sample series. Fourier transform. Frequency spectrum.
Fourier space filtering. Convolution theorem. Application examples.
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Signal	and	sample	series
An elemental periodic wave such as sine is defined by one of the following
expressions (as a function of period T, or frequency f):
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𝑃 𝑡 = 	𝐴× sin
2𝜋
𝑇 𝑡 + 𝜙 + 𝐶 𝑃 𝑡 = 	𝐴× sin 2𝜋𝑓𝑡 + 𝜙 + 𝐶

A: amplitude; f: frequency; T: period; f: phase; C: translaction



Signal	and	sample	series
Periodic wave examples
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𝑦 = 𝑎× sin 𝝎𝑥 + 𝜑 + 𝑑 𝝎 = 2𝝿𝑓



Signal	and	sample	series
In a periodic signal P, the frequency value f corresponds to the number of cycles m
occurring in the time interval of one second (or unit of time) given in Hertz (Hz).
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Signal with a frequency of 10 Hz



Signal	and	sample	series
In a process of digitizing an analog signal, P sampling consists of generating a
discrete pulse sequence S (sample series) with a sampling frequency fs.
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Signal	and	sample	series
The Nyquist-Shannon sampling theorem establishes the condition that determines
the smallest sampling frequency that makes signal reconstruction appropriate:

fs >	2	´ fmax

In other words, the sampling frequency must be greater than twice the maximum
signal frequency.
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Signal	and	sample	series
In this perspective, the following question may be asked:

• Why not then sample the signal with the highest possible value for f, or always a
high value?
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Signal	and	sample	series
Consider, for example, a periodic P wave of a sine with f = 10 Hz, i.e. a signal with a
frequency of ten cycles per second (simplified with A = 1 and 𝜙 = C = 0). A series
with fs = 10 Hz (which does not meet the above condition) has one sample per
period.

Connecting these points results in a line that has no relation to the shape of the
signal.
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Signal	and	sample	series
Consider now a series with fs = 210 = 20 Hz, which is at the limit of Nyquist
condition (but not yet respecting it); In this case there are two samples per period
which, connected, form a line similar to the previous one.
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Signal	and	sample	series
By increasing the sampling frequency to a value that meets the condition, for
example, fs = 310 = 30 Hz, it can be seen that the series behaves in such a way that
the signal can already be clearly reconstructed and may be almost sufficient to the
goals to be met.
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Signal	and	sample	series
With a higher value of, for example, fs = 2010 = 200 Hz, we have a sampled series
already quite faithful to the original signal.
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Signal	and	sample	series
Therefore, for a type of signal with a known bandwidth, it is unnecessary to sample
it with sampling frequencies above those which allow unambiguous reconstitution.
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Signal	and	sample	series
Consider a second synthetic example, produced from the sum of three sine waves
with different frequencies not known at the outset and which, although equally
periodic, has a more difficult behavior to interpret. The goal will be to know the
characteristics of the elementary waves. For this we use the spectral analysis using
the Fourier transform.
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Fourier	Transform
Fourier's theory states that any signal can be expressed as a sum of several sine
waves, that is, a sum of sine and cosine functions.

The Fourier transform (TF) allows the decomposition of a signal (defined in the
spatial domain) into its sine and cosine components, representing it in the so-called
“frequency domain”, or Fourier space.
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1D	Fourier	Transform
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N	=	number	of	samples
x	=	current	sample	(0…N-1)
f(x)	=	signal	value	at	x
u	=	current	frequency	(0	Hertz	to	N-1	Hertz)
F(u)	=	frequency	amplitude	u	present	in	signal



1D	Fourier	Transform
The frequency spectrum of a function results from the application of DFT. The
values resulting from this transformation belong to the domain of complex
numbers (z = a + bj), consisting of a real part (a) and an imaginary part (b). The
magnitude of the spectrum is equal to the absolute value of DFT (| z |)
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Magnitude



Frequency	spectrum
Consider the following periodic signal (sine).

The spectrum of a signal contains the magnitudes of the wave frequencies that
make it up. In this example, since the signal represents a sinusoidal function (sine),
there is only one frequency.
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Frequency	spectrum
The spectrum has two parts: a negative part and a positive part. The negative part
contains negative frequencies. For real signals (without imaginary part), the
negative part of the spectrum is always a “mirrored” version of the positive part.
Thus, in this example, the positive part will have only one peak, and the negative
part will have the same peak as the positive part.
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Frequency	spectrum
The farther to the left (and to the right) is a peak, the higher the frequency it
represents. In other words, a peak far to the right (and left) means that the signal
contains a periodic high frequency component.
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Frequency	spectrum
Consider a second example of a sinusoidal curve added by a value C: f (x) = sin (x) +
C. The action of this sum is to translate the signal in the yy direction. The mean
value of the signal is equal to the value of C (since the mean value of sin (x) = 0).
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C	=	5



Frequency	spectrum
In the frequency spectrum the frequency f = 0 corresponds to the DC component.
This component has an amplitude equal to the average signal value. When a signal
has a nonzero mean value, in addition to the frequency peaks of the sine wave
components, the zero frequency of the spectrum (f = 0) has an additional peak
which is called the DC component and has an amplitude equal to the mean value.
Signal Thus, if the spectrum of a signal has a nonzero value at the source, it will be
known that the average signal value is nonzero.
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DC	component



Frequency	spectrum
Consider a third example, such as the sum of two sine functions, where the second
has a double frequency of the first: f (x) = sin (kx) + sin (2kx). The sign has the
following form:
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Frequency	spectrum
Since	there	are	two	sine	functions	with	two	different	frequencies,	two	peaks	can	be	
expected	on	the	positive	side	of	the	spectrum	(and	two	on	the	negative	side).
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2D	Fourier	Transform
In a 2D signal (an image) the sinusoidal variations are represented by the gray scale
variations of the pixels along the image.

The spatial frequency corresponds to the frequency along the space where there is
intensity modulation (in the case of the images below, along the xx axis). The left
image has a lower spatial frequency than the right one.
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2D	Fourier	Transform
Transforming the spatial domain to the spatial frequency domain results in a
function of complex values, that is, type z = a + bj.

Spectrum visualization can be done by determining the Magnitude function.
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𝐹 𝑢 = 𝑟𝑒 𝐹 𝑢 + 𝑖𝑚 𝐹 𝑢 	𝑗

Magnitude = 𝐹 𝑢 = 	 (𝑟𝑒(𝐹 𝑢 ))@+(𝑖𝑚(𝐹 𝑢 ))@�

𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑡𝑎𝑛
𝑖𝑚(𝐹 𝑢 )
𝑟𝑒(𝐹 𝑢 )

re:	real	part	of	the	complex	number
im:	imaginary	part	of	the	complex	number



2D	Fourier	Transform
Discrete Fourier Transform (2D): For an image of dimensions M × N, the two-
dimensional Discrete Direct Fourier Transform is given by:

The function f (x, y) is the image in the spatial domain and the exponential term is
the base function that corresponds to the representation of each point F (u, v) of
the Fourier space.

The magnitude of the spectrum is calculated with the following expression:
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2D	Fourier	Transform
The Discrete Direct Fourier Transform (DDFT) corresponds to the sampled TF and as
such does not contain all the frequencies that form an image, but only a set of
samples that is large enough to describe the spatial domain of the image.

The number of frequencies corresponds to the number of pixels in the spatial
domain image f (x, y), that is, the image and spectrum have the same dimensions.
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2D	Fourier	Transform
The base functions are sine and cosine waves with progressive frequencies, that is,
F (0, 0) represents the DC component of the image (which has zero frequency),
corresponding to the average intensity, and F (M-1, N-1) represents the highest
frequency in xx and yy.
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2D	Fourier	Transform
Almost always the DC value is by far the largest component of the frequency
spectrum. The numerical range of the spectrum values is too large to be viewed on
the screen, making their representation not often feasible.
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Magnitude	spectrum

Min	=	1.4514;	Max	=	6955093
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2D	Fourier	Transform
Applying the logarithmic operator to the Magnitude function for an 8-bit
representation gives an appropriate representation of the frequency spectrum
(alternatively, sometimes the magnitude matrix is divided by the total number of
pixels).
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Magnitude	spectrum
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2D	Fourier	Transform
The two-dimensional Discrete Inverse Fourier Transform (IDFT) is given by:
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2D	Fourier	Transform
IDFT generally needs the real and imaginary parts obtained from DDFT.
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2D	Fourier	Transform
As an example, consider the image below, where each vertical strip (white or black)
has a thickness of 2 pixels.
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2D	Fourier	Transform
The Fourier transform results in the right spectrum that has three frequencies: the
DC value and, as the spectrum is symmetrical with respect to the center, the two
points corresponding to the frequency of the lines in the original image.
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2D	Fourier	Transform
Since in the spatial domain the function changes in the horizontal direction, the
points of the spectrum are aligned along a horizontal line passing through the
center.

In the spectrum, the distance from the points to the center can be explained as
follows: the maximum frequency (kmax), which can be represented in the original
image, is 2 pixels apart (one black and one white):
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2D	Fourier	Transform
The signal consisting of vertical bands with a thickness of 2 pixels (4 pixels cycle)
has:

Therefore, the points of the spectrum are midway between the center and the
limits of the image, ie the frequency represented is half of the maximum frequency.
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Filtering	in	frequency	domain
TF is directly related to many operations, including filtering operations.

A filtering operation, which in the spatial domain results from a convolution
operation between a filter (kernel) and the gray image, is performed with a simple
multiplication in the frequency domain (TF of the initial image).

Thus low pass, high pass and band pass filters can be defined, for example by
eliminating spectrum frequencies.
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Filtering	in	frequency	domain
Flat	Low	Pass	filter:
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Filtering	in	frequency	domain
Flat	High	Pass	filter:
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Filtering	in	frequency	domain
Gaussian	Low	Pass	filter
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Filtering	in	frequency	domain
Gaussian	High	Pass	filter
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Filtering	in	frequency	domain
The	Butterworth filter	of	order	n	and	cutoff	frequency	D0	is	defined	as:

This filter has the advantage that you can control the sharpness with the order (n).

A Butterworth lowpass filter maintains frequencies within radius D0 and discards
those outside. It also introduces a 1 to 0 gradual transition to reduce the ringing
effect of the flat filter.
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Filtering	in	frequency	domain
Butterworth Low	Pass	filter
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Filtering	in	frequency	domain
Butterworth	High	Pass	filer
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Filtering	in	frequency	domain
Flat	Band	Pass	filter
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Convolution	theorem
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In mathematics, the convolution theorem states that, under suitable conditions,
the TF of a two-signal convolution is obtained by multiplying its individual Fourier
transforms and performing the inverse of the TF of that product.

This theorem is important because it establishes the link between frequency
domain operations and the action of linear spatial filters.

Linear filtering operations performed by convolution in the spatial domain can be
performed by simple multiplications in the Fourier domain, making the filtering
process faster.

𝑓 𝑥, 𝑦 ∗ ℎ 𝑥, 𝑦 = 𝑖𝑑𝑓𝑡(𝐹(𝑢, 𝑣)×𝐻(𝑢, 𝑣))



Convolution	theorem
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To do this, simply multiply the desired filter matrix by the resulting DFT image
(spectrum with both real and imaginary parts) and then apply the IFT. In the figure
one can see the illustration of the filtering process of an image by a rectangular
filter of the arithmetic mean.



Application	Examples
Text Orientation Detection: TF is used to acquire information about the geometric
structure of an image's spatial domain. Text recognition using image processing
techniques is simplified if it is assumed that the lines of a given text are arranged in
a given direction.
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Application	Examples
Spectrum image peak thresholding allows to identify the orientation of the text line
layout.
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Application	Examples
In the case of a 45º rotated image, after identifying the frequency peaks on the
main line, the image can be rotated using the knowledge of the angle obtained in
this procedure.

The line perpendicular to the main line results from dark corners in the rotated
image.
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Application	Examples
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The	Fourier	Transform	can	be	used	to	perform	operations	of	locating	objects	in	an	
image	by	determining	the	cross	power	spectrum	(which	will	be	seen	in	the	image	
segmentation	theme).
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